SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Engineering Mathematics-III (16HS612)

Year &Sem:II-B.Tech& I-Sem Regulation: R16 Course & Branch: B.Tech Com to all

<u>UNIT – I</u>

1. a) Show that $w = \log z$ is analytic everywhere except at the origin and find $\frac{dw}{dz}$. [5M]

b) If f(z) is analytic function of z prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) log|f(z)| = 0$ [5M]

2. a) Show that $u = \frac{x}{x^2 + y^2}$ is harmonic. [5M]

b) Find the analytic function whose imaginary part is $e^x(xsiny + ycosy)$. [5M]

3. a) Determine p such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \left(\frac{px}{y}\right)$ be an analytic.[5M]

b) Find all the values of k, such that $f(z) = e^x(\cos ky + i\sin ky)$ [5M]

4. a) If f(z) = u + iv is an analytic function of z and if $u - v = e^x(\sin x - \cos y)$ find f(z) in terms of z. [5M]

b) Find the analytic function f(z) whose real part is $e^x(x\sin y + y\cos y)$. [5M]

5. a) Show that $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane. [5M]

b) Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$ [5M]

6. a) Evaluate line integral $\int f(z) dz$ where $f(z) = y - x - 3x^2i$ and C consists of two Straight line segments one from z = 0 to z = i and the other from z = i to z = 1 + i [5M]

b) Evaluate $\int \frac{\cos z - \sin z}{(z+i)^3} dz$ with C: |z| = 2 using Cauchy's integral formula. [5M]

7. Calculate $\int f(z) dz$ where $f(z) = \pi exp\pi \bar{z}$ and C is boundary of the square with vertices at the points 0,1,1+i, & i where c being in the clockwise direction [10M]

8. Evaluate $\int_0^{1+3i} (x^2 - iy) dz$ along the paths. i) y = x ii) $y = x^2$ [10M]

9. a) Evaluate $\int \frac{\sin^2 z}{\left(z - \frac{\pi}{6}\right)^3} dz$ where C: |z| = 1 [5M]

b) Evaluate $\int \frac{\log z}{(z-1)^3} dz$ where $C: |z-1| = \frac{1}{2}$ using Cauchy's integral formula. [5M]

10. if C denotes the boundary of the square whose sides lie along the lines $x = \pm 2$, $y = \pm 2$ Where c is described in the positive sense, evaluate the integrals

 $i) \int \frac{e^{-z}}{\left(z - \frac{\pi i}{2}\right)} dz \qquad ii) \int \frac{\cos z}{z(z^2 + 8)} dz \qquad [10M]$

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Engineering Mathematics-III (16HS612)

Year &Sem:II-B.Tech& I-SemRegulation: R16

- Course & Branch: B.Tech Com to all UNIT - II 1. a) Determine the poles of the function $f(z) = \frac{Z^2}{(z-1)^2(z+2)}$ and the residues at each pole b) Find the residue of the function $f(z) = \frac{1}{(Z^2+4)^2}$ where c is |z-i| = 2. [5M] [5M] 2. a) Find the residues of $f(z) = \frac{z^2}{1-z^4}$ at these singular points which lies inside the circle |z| = 1.5[5M] b) Find the residues of $f(z) = \frac{z^2}{z^2 + a^2}$ at z = ai[5M] 3. a) Determine the poles of the function $f(z) = \frac{z^2+1}{z^2-2z}$ and the residues at each pole [5M] b) Determine the poles and residues of $\tan hz$. 4. a) Evaluate $\int_{-\infty}^{\infty} \frac{\cos ax}{x^2 + 1} dx$, a > 0[5M] [5M] b) Find the residue of the function $f(z) = \frac{2e^z}{(z-3)z}$ where c: |z| = 2. [5M] 5. Evaluate $\int_0^{\pi} \frac{1}{a+b\cos\theta} d\theta = \frac{\pi}{\sqrt{a^2-b^2}}$, a > b > 0[10M] 6. Show that $\int_0^{2\pi} \frac{\cos 2\theta}{1 + 2a\cos\theta + a^2} d\theta = \frac{2\pi a^2}{1 - a^2}$, ($a^2 < 1$) using residue theorem. [10M] 7. a) Find the bilinear transformation which maps the point's $(\infty, i, 0)$ in to the points $(0, i, \infty)$ [5M] b) Find the bilinear transformation that maps the point's (0,1,i) in to the points 1+i, -i, 2 - iin w-plane [5M] 8. a) By the transformation $w = z^2$, show that the circles |z - a| = c (a, c being real) in the Z-plane corresponds to the limacons in the w-plane [5M] b) Find the image of the region in the z-plane between the lines $y = 0 \& y = \frac{\pi}{2}$ under the transformation $w = e^z$. [5M] 9. a) Find the bilinear transformation which maps the points $(\infty, i, 0)$ in to the points (-1, -1, 1)inw-plane. b) Find the bilinear transformation that maps the point's (1, i, -1) in to the points (2, i, -2)
 - [5M] in w-plane
- 10. a) The image of the infinite strip bounded by $x = 0 \& x = \frac{\pi}{4}$ under the transformation $w = \cos z$ [5M]
 - b) Prove that the transformation $w = \sin z$ maps the families of lines x = y = constantinto two families of confocal central conics. [5M]

Mathematics - I Page 2

UNIT -III

1. Find a positive root of $x^3 - x - 1 = 0$ correct to two decimal places by bisection method. [10 M]

2. Find out the square root of 25 given $x_0 = 2.0$, $x_0 = 7.0$ using bisection method.

[10 M]

3. Find out the root of the equation $x \log_{10}(x) = 1.2$ using false position method.

[10 M]

4. Find the root of the equation $xe^x = 2$ using Regula-falsi method.[10 M]

5. Find a real root of the equation $xe^x - \cos x = 0$ using Newton-Raphson method.

[10 M]

6. Using Newton-Raphson Method

a) Find square root of 10. [5 M]

b)Find cube root of 27.[5 M]

7. Using Newton's Forward Interpolation Formulae, find the polynomial y = tanx satisfying the following data, Hence evaluate tan(0.12)andtan(0.28)

X	0.10	0.15	0.20	0.25	0.30
Y	0.1003	0.1511	0.2027	0.2533	0.3093

[10M]

8. a) Using Newtons forwardinterpolation formula. ,and the given table of values

X	1.1	1.3	1.5	1.7	1.9
f(x)	0.21	0.69	1.25	1.89	2.61

Obtain the value of f(x) when x=1.4

[5M]

b) Evaluate f(10) given f(x) = 168,192,336 at x = 1,7,15 respectively,

use Lagrange interpolation.

[5 M]

9. a) Use Newton's Backward interpolation formula to find f(32) given f(25) = 0.2707, f(30) = 0.2707

0.3027 f(35) = 0.3386, f(40) = 0.3794

[5M]

b) Findthe unique polynomial P(X) of degree 2 or less such that P(1) = 1 P(3) = 27, P(4) = 64 using Lagrange's interpolation formula. [5M]

10. a) Using Lagrange's interpolation formula, find the parabola passing through the points

(0,1),(1,3) and (3,55)

[5M]

b) For X = 0.1, 2.4, 5; f(X) = 1.14, 15, 5, 6 find f(3) using forward difference table.

[5M]

<u>UNIT -IV</u>

1. Fit the curve $y = ae^{bx}$ to the following data.

[10 M]

X	0	1	2	3	4	5	6	7	8
У	20	30	52	77	135	211	326	550	1052

2.a) Fit the exponential curve of the form $y = ab^x$ for the data

$$y = ab^x$$
 for the data

[5 M]

X	1	2	3	4
У	7	11	17	27

b) Fit a straight line y=a+bx from the following data

[5 M]

X	0	1	2	3	4
У	1	1.8	3.3	4.5	6.3

3. a) Fit a second degree polynomial to the following data by the method of **least squares** [10 M]

X	0	1	2	3	4
У	1	1.8	1.3	2.5	6.3

b) Fit a straight line y=ax+b from the following data

[5 M]

X	6	7	7	8	8	8	9	9	10
У	5	5	4	5	4	3	4	3	3

4. Fit a Geometric curve to the following data

[5M]

X	1	2	4	6	
У	6	4	2	2	

and estimate y(2.5)

b) Fit a second degree polynomial to the following data by the method of **least squares** [5 M]

2	X	0	1	2	3	4
	у	1	5	10	22	38

5. a) Fit the curve of the form $y = ae^{bx}$

[5 M]

X	77	100	185	239	285
у	2.4	3.4	7.0	11.1	19.6

b) Fit the curve of the form $y = ab^x$ for

[5 M]

X	2	3	4	5	6
У	8.3	15.4	33.1	65.2	127.4

6. a) Using Simpson's
$$\frac{3}{8}$$
 rule, evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$

[5M]

b)Evaluate
$$\int_{0}^{1} \sqrt{1+x^3} dx$$
 taking h =0.1 using Trapizoidal rule

[5M]

7. Dividing the range into 10 equal parts , find the value of
$$\int_{0}^{\pi/2} \sin x dx$$
 using Simpson's $\frac{1}{3}$ rule.[10M]

8. Evaluate
$$\int_{0}^{1} \frac{1}{1+x} dx$$

[10 M]

i) By trapezoidal rule and Simpson's
$$\frac{1}{3}$$
 rule.

ii) Using Simpson's
$$\frac{3}{8}$$
 rule and compare the result with actual value.

9. a) Compute
$$\int_{0}^{4} e^{x} dx$$
 by Simpson's $\frac{1}{3}$ rule with 10 subdivisions. [5 M]

b) .Find
$$\int_{3}^{7} x^2 \log x dx$$
, using Trapezoidal rule and Simpson's rule by 10 sub divisions. [5 M]

10.a)Evaluate approximately,byTrapizoidal rule,
$$\int_{0}^{1} (4x-3x^{2})dx$$
 by taking n=10. [5M]

$$\int_{0}^{1} e^{-x^{2}} dx$$
 Simpson's $\frac{1}{3}$ rule [5M]
b) Evaluate $\int_{0}^{1} e^{-x^{2}} dx$

UNIT-V

- 1.a) Tabulate y (0.1), y (0.2), and y (0.3) using Taylor's series method given that $y^1 = y^2 + x$ and y(0) = 1 [5 M]
 - b) Find the value of y for x=0.4 by Picard's method given that $\frac{dy}{dx} = x^2 + y^2$, y(0)=0 [5 M]
- 2. Using Taylor's series method find an approximate value of y at x = 0.2 for the [10M]

D.E $y^1 - 2y = 3e^x$, y(0) = 0. Compare the numerical solution obtained with exact solution.

- 3.a) Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by Taylor's series method [5 M]
- b) Obtain y(0.1) given $y^1 = \frac{y-x}{y+x}$, y(0)=1 by Picard's method. [5 M]
- 4.a) Given that $\frac{dy}{dx}$ =1+xy and y (0) =1 compute y(0.1),y(0.2) using Picard's method [5 M]
- b) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1) =2 and find y(2). [5M]
- 5.a)Using Runge-Kutta method of second order, compute y(2.5) from $y^1 = \frac{y+x}{x}$

$$y(2)=2$$
, taking h=0.25 [5M]

- b) Solve numerically using Euler's method $y' = y^2 + x$, y(0)=1. Find y(0.1) and y(0.2) [5M]
- 6. a) Using Euler's method, solve numerically the equation $y^1 = x + y$, y(0) = 1 [5M]
 - b)Solve $y^1 = y x^2$, y(0) = 1 by picard's methodupto the fourth approximation. [5 M]

Hence find the value of y(0.1), y(0.2).

- 7.a) Use Runge- kutta method to evaluate y(0.1) and y(0.2) given that $y^1 = x + y$, y(0) = 1 [5 M]
 - b) Solve numerically using Euler's method $y' = y^2 + x$, y(0) = 1. Find y(0.1) and y(0.2) [5 M]
- 8. a) Using R-K method of 4th order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$, y(0)=1 Find y(0.2) and y(0.4) [6 M]
 - b)Obtain Picard's second approximate solution of the initial value problem [4M]

$$\frac{dy}{dx} = \frac{x^2}{y^2 + 1}, y(0) = 0$$

- 9. Using R-K method of 4th orderfind y(0.1),y(0.2) and y(0.3) given that $\frac{dy}{dx} = 1 + xy, y(0) = 2$ [10M]
- 10. a)Find y(0.1) and y(0.2) using R-K 4^{th} order formula given that $y^1 = x^2 y$ and y(0)=1 [5 M]
 - b) Using Taylor's series method, solve the equation $\frac{dy}{dx} = x^2 + y^2$

for
$$x = 0.4$$
 given that $y = 0$ when $x = 0$. [5 M]